| Use MathCad to Solve: e-x - e2x + 1 = 0 ¾® | e-x - e2x + 1 = 0 solve ® 0.28119957 | لاحظ في حل المعادلة (MathCad 18) حصلنا على الجواب الحقيقي ¾¬ | ||||||||||
| By: Mathematica 9 | By: Derive 6 | By: MathCad 15 | By: Maple 18 | By: Excel | ||||||||
| NSolve[E^(-x) -E^(2x)+1, {x},Reals,8] | NSOLVE(e-x- e2x+1, x, Real) | Ctrl+Shift+. Before solve, Ctrl + = To have = | fx := exp(-x)-exp(2x)+1 = 0: | See Example 10 | ||||||||
| {{x ® 0.28119957}} | 0.28119957 | e-x - e2x + 1 = 0 solve ® 0.28119957 | fsolve(fx) | By Secant & | ||||||||
| ↓↓↓ | ↓↓↓ | 0.28119957 | Decimal = 8 | By Newton | ||||||||
|
||||||||||||
| MthLab 11, 15 (Also) | ||||||||||||
| numeric::solve( | ||||||||||||
| {[x = 0.2811995743]} | ||||||||||||